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Abstract

Given an action of a compact quantum group on a unital C∗-algebra, one can consider

the associated Wassermann-type C∗-algebra inclusions. One hereby amplifies the original

action with the adjoint action associated with a finite dimensional unitary representation,

and considers the induced inclusion of fixed point algebras. We show that this inclusion is

a finite index inclusion of C∗-algebras when the quantum group acts freely. Along the way,

two natural definitions of freeness for a compact quantum group action, due respectively

to D. Ellwood and M. Rieffel, are shown to be equivalent.
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1 Introduction

One of the fundamental concepts in the study of locally compact quantum groups is the notion
of ‘noncommutative principal bundles’, or the free and proper actions on ‘noncommutative
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spaces’, the noncommutative spaces being represented by various algebraic structures. In the
C∗-algebraic study of such principal bundles, it turned out that there can be two different ways
to formulate the freeness of an action.

The first is a certain density condition on the coaction map, called the Ellwood condition,
introduced by D.A. Ellwood [5]. If the algebra is commutative, so that we are back in the
classical case of a locally compact group acting continuously on a locally compact space, this
condition is equivalent to freeness in the ordinary sense. In the purely algebraic setting, the
Ellwood condition corresponds to the notion of a Hopf-Galois extension.

The second is the notion of a saturated action, which is more suited for the study of K-theory
of operator algebras. It was introduced by M. Rieffel [14, 17] in the setting of actions by
compact groups on C∗-algebras. Since it is stated as a condition on the structure of the crossed
product algebra, there is a straightforward generalization to the case of compact quantum group
actions. For example, the case of finite quantum groups was studied by W. Szymański and
C. Peligrad [13].

It has been known that these conditions are closely related to each other. For example, when
G is a compact Lie group, C. Wahl [23, Proposition 9.8] showed that they are equivalent.

Our first main result is that the above two notions actually coincide in the setting of compact
quantum group actions.

Theorem 1.1. Let G be a compact quantum group acting continuously on a C∗-algebra A.
Then the following conditions are equivalent:

(1) The action satisfies the Ellwood condition.

(2) The action is saturated.

Our following result relates the freeness of a compact quantum group action to certain ring-
theoretical properties of the associated isotypical components.

Let π be a finite dimensional unitary representation of a compact quantum group G, A a unital
C∗-algebra acted upon freely by G, and Aπ be the isotypical component of A associated to π. In
particular, the isotypical component for the trivial representation is the fixed point subalgebra
AG. Each Aπ becomes an AG-bimodule by the algebra structure of A.

The spaces Aπ can be interpreted as sections of a direct sum of the vector bundle induced
by the representation π. In the classical case of compact group actions on compact Hausdorff
spaces, they are known to be finitely generated projective over the algebra of the base space.
In our C∗-algebraic setting, we obtain the same result from a combination of a technique used
in the proof of Theorem 1.1 and Kasparov’s stabilization theorem for Hilbert C∗-modules.

Theorem 1.2. Let A be a unital C∗-algebra endowed with a free action of G. Then each
isotypical component Aπ is finitely generated projective as a right AG-module.

We note that, for actions of discrete group duals on general C∗-algebras, this was proven by
W. Szymański in unpublished work. But even for compact groups acting on general unital
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C∗-algebras, our result seems to be new.

Note that the conclusion in Theorem 1.2 also holds for ergodic actions of G, i.e. actions for
which AG = C. See [6] for the case of compact groups, and [3] for the general case of compact
quantum groups. Our proof of Theorem 1.2 was inspired by the short argument for this result
which appears in [16], as well as by [24] and the first sections of [4]. Our arguments will cover
both the free and ergodic cases at once. We stress that, since we work in the C∗-algebraic
setting, we need to refine some of the von Neumann algebraic techniques which appear in the
above papers.

The conclusion of Theorem 1.2 is not valid for an arbitrary action: one can check for example
that the isotypical components for the action of the circle group on the closed unit disc are not
finitely generated over the fixed point algebra, except for the fixed point algebra itself. The
problem is essentially that the field of stabilizer groups is not continuous.

Subsequent to Jones initial subfactor paper [7], a lot of effort has gone into constructing von
Neumann algebraic subfactors, starting from more classical symmetries and building up further
to quantum symmetries, see e.g. [25],[27],[19],[1],[2],[11]. Motivated by this celebrated theory,
Y. Watatani [26] introduced the notion of finite index inclusion of C∗-algebras. We will show
that, also in the C∗-algebraic setting, the Wassermann type inclusion associated with finite di-
mensional unitary representations of quantum groups provides an example of such an inclusion.
This generalizes the case of finite groups in [26, section 2.8] and finite quantum groups in [13].
The key is that the above structure theorem on Aπ gives a finite quasi-basis for this inclusion.

Theorem 1.3. Let G act freely on a unital C∗-algebra A, and let π be a finite dimensional
unitary representation of G. Consider A ⊗ B(Hπ) with its induced action by G. Then the
inclusion

AG ⊆ (A⊗B(Hπ))
G

is a finite index inclusion of C∗-algebras. When π is irreducible, the index of the natural
conditional expectation is equal to the square of the quantum dimension of Hπ.

The paper is organized as follows. We gather basic facts about compact quantum groups and
their representations in Section 2, where we also prove a crucial Pimsner-Popa type estimate
on the complete boundedness of the projections onto spectral subspaces. The most technical
part of this paper occupies Section 3, where we study the adjointability of Galois maps in terms
of various Hilbert C∗-bimodule structures of the isotypical components. The first two of our
main theorems are proved in Section 4, based on the results of Section 3. Finally, we study
the C∗-algebraic index for the Wassermann type inclusion associated with a free action and an
irreducible representation in Section 5.

General notations

We denote the identity maps of various objects by ι once and for all. If X is a Banach space
and E ⊆ X is a subset, we denote by [E] the closed linear span of E inside X . Following
the convention of right Hilbert C∗-modules, the scalar product of Hilbert spaces is taken to
be conjugate linear in the first argument. The complex conjugate of a Hilbert space H will
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be identified with the dual of H by means of the inner product and denoted by H ∗. The
multiplier C∗-algebra of a C∗-algebra C is denoted by M(C). When E is a right Hilbert
C∗-module over a C∗-algebra A, the algebra of (adjointable) A-endomorphisms is denoted by
L(E)A and that of the compact A-endomorphisms is by K(E)A. If there is no fear of confusion
we also write L(E) and K(E).

2 Isotypical components of quantum group actions and

associated Hilbert modules

2.1 Compact quantum groups

In this section, we review the theory of compact quantum groups. A compact quantum group
G is represented by a unital C∗-algebra C(G), together with a unital ∗-homomorphism

∆∶C(G)→ C(G)⊗min C(G)
satisfying the coassociativity and the cancellation properties [28, 10]. We will denote by P (G) ⊆
C(G) the Hopf algebra of matrix coefficients associated with G, by S its antipode, and by
ϕ∶C(G)→ C the invariant Haar state on C(G).
Let π be a finite dimensional unitary representation ofG, by which we mean a finite dimensional
Hilbert space Hπ together with a left C(G)-comodule structure

δπ∶Hπ → C(G)⊗Hπ

satisfying 1 ⊗ v∗w = δπ(v)∗δπ(w) for all v,w ∈ Hπ, having interpreted Hπ as linear operators
between the Hilbert spaces C and Hπ. Choosing an orthogonal basis {ei} of Hπ, and writing
δπ(ei) = ∑j uij ⊗ ej , this means that ∑k u

∗
ikujk = δij. Consequently ∑k ukiu

∗
kj = δij , as u is

invertible. We let IrrG denote a complete representative system of irreducible finite dimensional
unitary representations of G up to unitary equivalence.

If π is a unitary representation of G, we denote by π the associated contragredient representa-
tion. It is implemented on H ∗

π with the dual comodule structure, but we equip it with a new
Hilbert space structure averaged out by means of ϕ. More precisely, choosing an orthonormal
basis ei of Hπ with δπ(ei) =∑j uij⊗ej , and writing e∗i = ⟨ei, ⋅ ⟩, we define the new scalar product
on H ∗

π by
⟪e∗i , e∗j⟫ =∑

k,l

ϕ(uiku
∗
jl)⟨e∗k, e∗l ⟩ =∑

k

ϕ(uiku
∗
jk).

By Woronowicz’s theory [28], we obtain the invertible positive matrix Qπ ∈ B(Hπ) for each
π ∈ IrrG satisfying Tr(Qπ) = Tr(Q−1π ) and

ϕ(u∗ijukl) = δik ⟨el,Qπej⟩
Tr(Qπ) , ϕ(uiju

∗
kl) = δjl ⟨ek,Q

−1
π ei⟩

Tr(Q−1π ) , for all i, j, k, l. (1)
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The number Tr(Qπ) is known as the quantum dimension of Hπ,

dimq(Hπ) = Tr(Qπ).
One can then define the quantum dimension of any representation of G by linearity. See e.g. [18]
for a detailed exposition.

2.2 Actions of compact quantum groups

An action of G on a (possibly non-unital) C∗-algebra A is given by a non-degenerate injective
∗-homomorphism α∶A→ A⊗minC(G), satisfying the coaction property (α⊗ ι) ○α = (ι⊗∆) ○α
and the density condition

[α(A)(1⊗C(G))] = A⊗min C(G).
We denote by B = AG the C∗-algebra of G-invariant elements, i.e. elements x ∈ A satisfying
α(x) = x⊗ 1. One then has the following map EB from A to B:

EB(x) = (ι⊗ϕ)α(x), x ∈ A.

In case A is unital, this is a conditional expectation. In general, EB is a c.c.p. B-bimodule
map.

When π is a finite dimensional unitary representation of G, we can consider the vector space
of ‘equivariant functions’

A◻Hπ = {z ∈ A⊗Hπ ∣ (α⊗ ι)z = (ι⊗ δπ)z}.
It has a natural B-bimodule structure, as well as a right B-valued Hermitian inner product
which is characterized by the following identity in B ≅ B ⊗C:

⟨w,z⟩B = w∗z, w, z ∈ A◻Hπ.

We further put

Aπ = linear span of {(ι⊗ ω)z ∣ z ∈ A◻Hπ, ω ∈H
∗
π } ⊆ A,

which we call the π-isotypical component of A. These Aπ are naturally B-bimodules with the
right B-Hermitian inner product defined by

⟨x, y⟩B = EB(x∗y).
They carry an (algebraic) right P (G)-comodule structure. Note that for the trivial represen-
tation π = triv, we have Atriv = B. The involution on A and the conjugate operation on the
unitary representations of G are related by

Aπ = {x∗ ∣ x ∈ Aπ}.
5



We denote by P (A) the ∗-algebra ∑⊕π∈IrrGAπ.

If π1 and π2 are two finite dimensional unitary representations of G, we denote their tensor
product representation on Hπ1

⊗Hπ2
by π1 ×π2. One then has the inclusion Aπ1

⋅Aπ2
⊆ Aπ1×π2

.

We omit the proof of the following lemma, which follows from a straightforward calculation. In
the statement of the lemma, we endow H ∗ with its modified Hilbert space structure.

Lemma 2.1. Let π be an irreducible representation of G. Then the map

φπ∶ (A◻Hπ)⊗H
∗
π → Aπ, z ⊗ ω →

√
n(ι⊗ ωQ−1π )z

is an isomorphism of B-bimodules which is compatible with the B-valued inner product.

2.3 Hilbert module structures

The above right B-modules Aπ and A◻Hπ are complete with respect to their B-valued inner
products. To see this, we first introduce the following special elements.

Definition 2.2. Let π be an irreducible representation of G. We call the quantum character
of π the unique element χπ ∈ P (G) satisfying

(ϕ(χπ ⋅ )⊗ ι)δρ =
⎧⎪⎪⎨⎪⎪⎩
0 if ρ ∈ IrrG and ρ ≇ π,

ιHρ
if ρ ≅ π.

We will also use the shorthand notation

ωπ = χ̂π = ϕ(χπ ⋅ ) ∈ C(G)∗.
For an arbitrary representation π, we write χπ for the sum of the quantum characters of those
irreducible representations which appear in π with non-zero multiplicity.

We note that χπ is well-defined by the Peter-Weyl theory for compact quantum groups. We
record the following facts about χπ.

Lemma 2.3. For each representation π of G, we have that

S2(χπ) = χπ, S(χπ)∗ = χπ, and χ∗π ∈ C(G)π.

Consider now the bounded map

Eπ ∶A→ A∶a→ (ι⊗ ωπ)α(a).
The following lemma is a reformulation of (part of) [15, Theorem 1.5] (which holds regardless
of any unitality assumption on A).

Lemma 2.4. The map Eπ is an idempotent onto Aπ.
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The following Pimsner-Popa type inequality will be crucial in what follows.

Lemma 2.5. For each finite dimensional unitary representation π of G, there exists cπ > 0
such that for all n ∈ N0 and a ∈Mn(C)⊗A, we have

(ι⊗Eπ)(a)∗(ι⊗Eπ)(a) ≤ c2π(ι⊗EB)(a∗a).
Proof. Since the estimating constant depends only on the representation and not on the coac-
tion, we can restrict to the case n = 1, by replacing the coaction α with the amplified coaction
ι⊗ α.

Then, using that ι ⊗ ϕ is a c.c.p. map of A ⊗min C(G) onto A ⊗ C, and using the inequality
φ(x)∗φ(x) ≤ φ(x∗x) for a general c.c.p. map φ, we find

Eπ(a)∗Eπ(a) = (ι⊗ ϕ)((1⊗ χπ)(α(a)))∗(ι⊗ϕ)((1⊗ χπ)α(a))
≤ (ι⊗ ϕ)(((1⊗ χπ)α(a))∗((1⊗ χπ)α(a)))

The right hand side is bounded from above by ∥χπ∥2(ι ⊗ ϕ)(α(a∗a)) = ∥χπ∥2EB(a∗a) by the
positivity of ι⊗ φ. Setting cπ = ∥χπ∥, we obtain the assertion.

Corollary 2.6. (1) The right B-module Aπ is complete with respect to its B-valued inner
product, that is, Aπ is a right Hilbert B-bimodule.

(2) We have [Aπ ⋅B] = Aπ and [A ⋅B] = A, where the closure is with respect to the C∗-norm.

(3) For each representation π, the space A◻Hπ is a right Hilbert B-bimodule.

By a right Hilbert B-bimodule, we mean a right Hilbert B-module E together with a non-
degenerate ∗-representation of B as adjointable operators on E .
Proof. By the previous lemmas, we have the Pimsner-Popa type inequalities

∥⟨a, a⟩B∥1/2 ≤ ∥a∥ ≤ cπ∥⟨a, a⟩B∥1/2
for a ∈ Aπ. As Aπ is closed in the C∗-algebra norm (being the image of a norm-bounded
projection), this proves the first part of the corollary.

One also easily shows that if bi is an approximate unit for B, then for each a ∈ A, we have
abi → a in the Hilbert module norm, and hence also in the C∗-norm. Since the linear span
P (A) of all the isotypical components is norm-dense in A by [15, Theorem 1.5], which holds
regardless of the unitality of A, the second part of the corollary is proven.

The third part then follows for π irreducible because A◻Hπ is an orthogonally complemented
summand of Aπ by Lemma 2.1. The general case follows since A◻− preserves finite direct
sums.

Notation 2.7. To distinguish the two different norms on Aπ, we will write

Aπ ∶Aπ endowed with the restriction of the C∗-norm of A,

Aπ ∶Aπ endowed with the right Hilbert B-module structure.
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The natural identification map Aπ → Aπ will be denoted by ΛA∶Aπ → Aπ.

We will also denote by A the right Hilbert B-module completion of A with respect to ⟨ ⋅ , ⋅ ⟩B.
We then have natural inclusions Aπ ⊆ A.
We can also put a right Hilbert B-K(Aπ)-bimodule structure on each Aπ by means of the
ordinary left B-module structure and the K(Aπ)-valued inner product

⟨x, y⟩K(Aπ) = ΛA(x∗)ΛA(y∗)∗.
Then we have ∥⟨x,x⟩K(Aπ)∥ = ∥EB(xx∗)∥, which is the norm squared obtained by considering
Aπ as a left Hilbert B-module by means of the inner product B⟨x, y⟩ = EB(xy∗). Hence we can
extend our previous notation as follows.

Notation 2.8. We write

Aπ∶Aπ endowed with the right K(Aπ)-Hilbert module structure.

We denote the natural identification map Aπ → Aπ by ΛA ∶Aπ → Aπ. In the same way, one
defines the right Hilbert K(A)-module completion of A by A .

Note that we have ∥x∥Aπ
= ∥x∗∥Aπ

.

Lemma 2.9. The maps ΛA, ΛA are completely bounded. Similarly, when ρ is a finite dimen-
sional unitary representation of G, the identity map on Aρ is completely bounded with respect
to the Aρ-norm or Aρ-norm on the domain and the Aρ-norm on the codomain.

Proof. The boundedness for the first two maps follows from a standard calculation using the
fact that EB is c.c.p. Furthermore, Lemma 2.5 shows that ι is completely bounded for the
Aρ-norm on the domain, with a norm bounded from above by cπ. By the above remark and
the general equality ∥x∗x∥ = ∥xx∗∥ for C∗-norms, we obtain an analogous cb-norm estimate of
ι from above by cπ for the Aπ-norm on the domain.

2.4 Crossed product and its corners

Let us put ĥ = φ(h⋅) ∈ C(G)∗ for h ∈ P (G), and consider the space

P̂ (G) = {ĥ ∣ h ∈ P (G)} ⊆ C(G)∗.
It is a (generally non-unital) ∗-algebra by the convolution product and the ∗-operation which
is determined by

ω∗(x) = ω(S(x)∗), x ∈ P (G).
This ∗-algebra admits a (non-unital) universal C∗-envelope C∗(G), which is a C∗-algebraic
direct sum of matrix algebras, the components of which are labeled by IrrG.
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It is easily seen that we can extend α to a unitary comodule structure on A,
αA∶A → A⊗min C(G),

where we view the right hand side as a right Hilbert B ⊗min C(G)-module in a natural way.
Then to the coaction αA, we can associate the (non-degenerate) ∗-representation

π̂α∶C
∗(G)→ L(A),

where L(A) denotes the space of adjointable linear endomorphisms of A. The map π̂α is
uniquely determined by

π̂α(ω)ΛA(x) = ΛA((ι⊗ ω)α(x)) for x ∈ A,ω ∈ P̂ (G).
Moreover, we have that

pπ = π̂α(χ̂π)
is the projection of A onto Aπ. In particular, Aπ is complemented in A.
If we perform this construction for the particular case of (A,α) = (C(G),∆), the space A
becomes a Hilbert space, which we denote by L 2(G). It is the completion of C(G) with
respect to the inner product ⟨x, y⟩ = ϕ(x∗y). In this case, we denote the associated GNS-map
by Λϕ∶C(G) → L 2(G), and we also write L 2(G)π = Λϕ(C(G)π) for the finite dimensional
Hilbert space of the matrix coefficients for π. The associated representation π̂∆ is then faithful,
and we will in the following treat π̂∆ as the identity map, so that C∗(G) ⊆ B(L 2(G)).
Consider now the right Hilbert B-module A ⊗L 2(G). It carries a natural non-degenerate
∗-representation of A ⊗min C(G) as B-endomorphisms (cf. [9], page 34). By means of the
homomorphism α, we obtain a representation of A on A ⊗ L 2(G) as well. Note that this
representation might not be faithful as we do not assume C(G) to be reduced. The space
A⊗L 2(G) also carries a ∗-representation of C∗(G), acting by the ordinary convolution on the
second leg.

The crossed product of A by G for the action α is defined as

A ⋊G = [α(A)(1⊗C∗(G))] ⊂ L(A⊗L
2(G)),

which will be a C∗-algebra. One could also use the right Hilbert A-module A⊗L 2(G) in the
above construction, and this would give the same C∗-algebra. We define

(A ⋊G)π = [(A ⋊G)(1⊗ χ̂π)],
which is a closed left ideal in A ⋊G. We similarly define

π(A ⋊G) = (A ⋊G)∗π, ρ(A ⋊G)π = [(A ⋊G)∗ρ(A ⋊G)π].
The π(A ⋊G)π are then C∗-algebras.

We state a lemma which lets us realize our Hilbert modules A and A in terms of this crossed
product. We omit the proof which follows from a straightforward computation. In the lemma,
we will denote the unit of C(G) by χtriv for clarity.
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Lemma 2.10. There exists a unique right Hilbert B-module structure on (A⋊G)triv such that

⟨x, y⟩B ⊗ χ̂triv = x
∗y, for all x, y ∈ (A ⋊G)triv,

and we have then a natural isomorphism

A→ (A ⋊G)triv∶ΛA(a)→ α(a)(1⊗ χ̂triv),
of right Hilbert B-bimodules.

By the previous lemma, it follows that we can realize K(A) as a closed 2-sided ideal inside
A ⋊G by means of a ∗-homomorphism

Πα∶K(A)→ A ⋊G∶ΛA(x)ΛA(y)∗ → α(x)(1 ⊗ χ̂triv)α(y∗), (2)

which is in general degenerate. We can interpret A as a right B-A ⋊G-Hilbert bimodule by
composing its ⟨ ⋅ , ⋅ ⟩K(A)-valued inner product with the map Πα. We then have an isomorphism
of right Hilbert B-A ⋊G-bimodules

A → triv(A ⋊G)∶ΛA (a)→ (1⊗ χ̂triv)α(a).
Note now that we can identify A with the closure of (ΛA ⊗ Λϕ)(α(A)) inside A ⊗L 2(G).
We obtain in this way that A is an A ⋊ G-invariant subspace of A ⊗L 2(G), and we denote
the resulting ∗-representation of A ⋊ G on A by πred. Its restriction to A is given by left
multiplication, while its restriction to C∗(G) is the representation π̂α. It is also easy to see
that πred ○Πα is the identity map on K(A).

2.5 Galois maps

We can interpret A itself as a right Hilbert B-A-Hilbert module, the bimodule structure being
given by multiplication and the A-valued inner product by ⟨x, y⟩A = x∗y. Further, for any
representation π, we interpret A ⊗L 2(G)π as a right A ⋊G -Hilbert module by means of the
identification map

A ⊗L
2(G)π → π(A ⋊G)∶ΛA (x)⊗Λϕ(S(h))→ (1⊗ ĥ)α(x), x ∈ A,h ∈ C(G)π. (3)

It requires a small argument to show that this Hilbert module is complete, but we will actually
never use this fact.

Definition-Proposition 2.11. The map

Aπ ⊗alg P (A)→ P (A)⊗C(G)π ∶a⊗ a′ → α(a)(a′ ⊗ 1)
extends uniquely to isometric maps

Gπ∶Aπ ⊗B A → A⊗L
2(G)π, Gπ∶Aπ ⊗B A→ A⊗L

2(G)π and Gπ∶Aπ ⊗B A →A ⊗L
2(G)π

between right Hilbert modules.

We shall call the above maps the π-localised C∗-, Hilbert C∗- and crossed product-Galois map,
respectively.
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Here − ⊗B − denotes the interior tensor product over B, see [9]. Also, for the first two maps,
the tensor product on the right is simply an amplification of the corresponding right Hilbert
modules with the Hilbert space L 2(G)π .
Proof. A trivial computation shows that the proposed formula for Gπ and Gπ respects the A-
valued, resp. B-valued inner product on elementary tensors, so that they descend and complete
to maps with domain Aπ ⊗B A, resp. Aπ ⊗B A. The statement about Gπ follows from the
following easily verified identity inside A ⋊G:

(1⊗ ̂S−1(x(1)))α(x(0)) = α(x)(1⊗ χ̂triv), x ∈ Aπ,

where we used the Sweedler notation α(x) = x(0) ⊗ x(1).
One can show that these Galois maps add up to respective isometries A ⊗B − → − ⊗L 2(G)
which are C∗(G)-equivariant from the second to the first leg - we will use this observation only
for the cases A and A. Note that the terminology ‘Galois map’ comes from the corresponding
Hopf algebraic theory, cf. [20].

3 Adjointability of the Galois maps

We keep the notational conventions of the previous section. In particular, G is a compact
quantum group acting on a not necessarily unital C∗-algebra A, with fixed point C∗-algebra B.
We first recall a general fact about the amplification of morphisms of Hilbert C∗-bimodules.

Lemma 3.1. Let C and D be C∗-algebras, E and E ′ respectively be a right Hilbert C∗-B-C-
bimodule and a right Hilbert C∗-B-D-bimodule. If T is a completely bounded B-module map
from E to E ′, then ι⊗T descends to a bounded map ι⊗B T of norm at most ∥T ∥cb from F ⊗B E
to F ⊗B E ′ for any right Hilbert C∗-B-module F .
Proof. This is shown by a standard argument. Let x1, . . . , xn be elements in E , and y1, . . . , yn
be in F . Then the matrix Y = (⟨yi, yj⟩B)i,j in Mn(B) is a positive element. Hence there exists
b = (bi,j)i,j ∈Mn(B) satisfying b∗b = Y . Then one has

⟨ι⊗ T(∑
i

yi ⊗ xi), ι⊗ T(∑
j

yj ⊗ xj)⟩
D
=∑

i,j

⟨T (xi), Yi,jT (xj)⟩D .

The right hand side is equal to

∑
i,j,k

⟨T (xi), b∗k,ibk,jT (xj)⟩D = ∥ι⊗ T (ξ)∥2,

where ξ ∈ Cn
⊗E is a column vector whose k-th component is equal to ∑i bk,ixi. By the complete

boundedness of T , we obtain

∥ι⊗ T (ξ)∥2 ≤ ∥T ∥2cb∥ξ∥2 = ∥T ∥2cb∥⟨∑
i

yi ⊗ xi,∑
j

yj ⊗ xj⟩
C
∥2,
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which implies the desired estimate ∥ι⊗B T ∥ ≤ ∥T ∥cb.
The adjointability of the Galois maps are in fact equivalent conditions.

Proposition 3.2. Let G be a compact quantum group acting on a unital C∗-algebra A. Let π
be a finite dimensional unitary representation of G. The following conditions are equivalent.

(1) The π-localized Hilbert-C∗-Galois map Gπ has an adjoint.

(2) The π-localized C∗-Galois map Gπ has an adjoint.

(3) The π-localized crossed product-Galois map Gπ has an adjoint.

Proof. Each of the implications can be argued along the same pattern; given the adjoint of one
of the Galois maps, we may restrict it to isotypical components Aρ ⊗alg C(G)π for ρ ∈ IrrG.
Then, Lemmas 2.9 and 3.1 imply that those restrictions are continuous with respect to the other
norms. The resulting map on P (A)⊗algC(G)π is shown to be a formal adjoint of the Galois with
respect to the corresponding algebra valued inner product. By inner product characterization of
duals for Hilbert C∗-modules, we obtain that this formal adjoint extends to the actual adjoint.
As an illustration, let us prove the implication (1)⇒ (2).
Assume that (1) holds.

Take a finite dimensional unitary representation ρ of G, h ∈ C(G)π, and a ∈ Aρ. We first claim
that G∗π(ΛA(a)⊗Λϕ(h)) is contained in Aπ ⊗B Aπ×ρ. Observe that we can write

Aπ ⊗B A = ⊕
θ∈IrrG

(Aπ ⊗B Aθ).

Take an irreducible representation θ which does not appear in π × ρ, and take x ∈ Aπ, y ∈ Aθ.
By a direct calculation, we obtain

⟨G∗π(ΛA(a) ⊗Λϕ(h)),ΛA(x) ⊗ΛA(y)⟩ = (ι⊗ ϕ⊗ ϕ)((α(a∗)⊗ h∗)((α ⊗ ι)α(x))(α(y) ⊗ 1)).
But we see that the second factor of the evaluated element only contains matrix coefficients of
the representation ρ×π×θ, which does not contain the trivial representation by the assumption
on θ and Frobenius reciprocity. Hence the above expression is zero, and the claim follows.

Combining Lemmas 2.9 and 3.1, we obtain a map Aπ ⊗B Aπ×ρ → Aπ ⊗B Aπ×ρ. Composing this
with G∗π , we obtain a map from Aρ ⊗alg C(G)π to Aπ ⊗B Aπ×ρ. Taking linear combinations, we
obtain a map F0 from P (A)⊗algC(G)π to Aπ ⊗B A. We want to show that F0 is bounded, and
that its closure equals G∗π.

Fix a ∈ Aρ and h ∈ C(G)π, and take elements (xn,i)Nn

i=1 ∈ Aπ and (yn,i)Nn

i=1 ∈ Aπ×ρ for n,Nn ∈ N
such that

G∗π(ΛA(a)⊗Λϕ(h)) = lim
n→∞

Nn

∑
i=1

ΛA(xn,i)⊗ΛA(yn,i).

12



Take x ∈ Aπ and y ∈ P (A). On the one hand, we have the convergence

∑
i

EB(y∗n,iEB(x∗n,ix)y) =∑
i

⟨ΛA(xn,i)⊗ΛA(yn,i),ΛA(x)⊗ΛA(y)⟩
Ð→
n→∞
⟨ΛA(a)⊗Λϕ(h),Gπ(x⊗ y)⟩ = (EB ⊗ϕ)((a∗ ⊗ h∗)α(x)(y ⊗ 1)).

On the other hand, we also have the convergence

⟨F0(a⊗ h),ΛA(x)⊗ y⟩ = lim
n→∞

Nn

∑
i=1

y∗n,iEB(x∗n,ix)y.

Multiplying to the right with an arbitrary z ∈ P (A), we find that

EB(⟨F0(a⊗ h),ΛA(x)⊗ y)⟩ ⋅ z) = EB(⟨ΛA(a)⊗Λϕ(h),Gpi(ΛA(x)⊗ y)⟩ ⋅ z).
As z was arbitrary, and as ⟨ ⋅ , ⋅ ⟩B is non-degenerate on P (A), we find that

⟨F0(a⊗ h),ΛA(x)⊗ y⟩ = ⟨ΛA(a)⊗Λϕ(h),Gπ(ΛA(x)⊗ y)⟩.
From this formula, we obtain that F0 descends to a contractive map F from A ⊗L 2(G)π to
A⊗B A, and that F is then precisely the adjoint of Gπ, hence we obtain (2).

The elements in the algebra B act on Aπ as left multiplication operators, which are adjointable
endomorphisms for the right Hilbert B-module structure. We let πL denote the associated
embedding of B into L(Aπ)B. The amplification of left multiplication defines an analogous
action of B on A◻Hπ. By abuse of notation, we denote this representation also by πL (see
Lemma 2.1).

Theorem 3.3. Let α be an action of G on a C∗-algebra A, and let π be a finite dimensional
unitary representation of G. Then the following conditions are equivalent.

(1) The π-localized Galois maps are adjointable.

(2) The image of π(A ⋊G) under πred lies in K(A,Aπ).
(3) The image of πL∶B → L(Aπ) is contained in K(Aπ).
(3’) The image of πL∶B → L(A◻Hπ) is contained in K(A◻Hπ).
Furthermore, when A is unital, these conditions are equivalent to the following statements.

(4) Aπ is finitely generated and projective as a right B-module.

(4’) A◻Hπ is finitely generated projective as a right B-module.

Proof. Proof of (1) ⇒ (2). Let us identify A ⊗L 2(G)π with π(A ⋊ G) as explained above
Proposition 2.11. Let us also identify Aπ ⊗B A with the right Hilbert K(A)-module K(A,Aπ)
of compact operators from A to Aπ, by means of the natural map

Υπ∶Aπ ⊗B A → K(A,Aπ)∶ΛA(x)⊗ΛA (y)→ ΛA(x)ΛA(y∗)∗.
13



Then Gπ becomes the map Πα of (2).

As Gπ is adjointable, we have, for x in π(A ⋊G) ≃ A ⊗L 2(G)π (see (3)) and y in K(A,Aπ),
that

Πα((G ∗π (x))∗y) = x∗Πα(y).
Applying πred, we conclude that (G ∗π (x))∗y = πred(x)∗y for all y ∈ K(A,Aπ), and hence G ∗π (x) =
πred(x) ∈ K(A).
The implication (2)⇒ (3) is of course trivial.

Proof of (3)⇒ (1). Take a ∈ P (A), say a ∈ Aρ for some representation ρ, and h ∈ C(G)π. Since
[AρB] = Aρ by Corollary 2.6, the operator π̂α(Ŝ−1(h))a is a compact operator in K(Aρ×π,Aπ).
Let Υπ,π×ρ∶Aπ ⊗B Aπ×ρ → K(Aρ×π,Aπ) be the restriction of Υπ. It is a complete isometry.
Moreover, combining Lemmas 2.9 and 3.1, we obtain an injective bounded map Sπ,π×ρ from
Aπ ⊗B Aπ×ρ to Aπ ⊗B Aπ×ρ.

Define a map F0 from P (A)⊗alg C(G)π to Aπ ⊗B A by

F0(a⊗ h) = (Sπ,π×ρ ○Υ
−1
π,π×ρ)(π̂α(Ŝ−1(h))a).

Let us choose for each n ∈ N a finite collection of xn,i ∈ Aπ, yn,i ∈ Aπ×ρ such that

F0(a⊗ h) = lim
n→∞
∑
i

ΛA(xn,i)⊗ΛA(yn,i).

Then by definition of F0(a⊗ h), we have the equality

lim
n
∑
i

ΛA(xn,i)ΛA(y∗n,i)∗ = π̂α(Ŝ−1(h))a

as operators from Aρ×π to Aπ. Applying the ∗-operation to both sides, and applying these
expressions to ΛA(x) for some x ∈ Aπ, we see that

lim
n
∑
i

ΛA(y∗n,iEB(x∗n,ix)) = ΛA((ι⊗ ϕ)((a∗ ⊗ h∗)α(x))).

In the above formula, the vectors inside ΛA belong to Aπ×ρ. Since the norms on Aπ×ρ and Aπ×ρ

are equivalent, the convergence still holds in Aπ×ρ. Hence if x ∈ Aπ and y ∈ P (A), we have

⟨F0(a⊗ h),ΛA(x)⊗ΛA(y)⟩ = lim
n
∑
i

EB(y∗n,iEB(x∗n,ix)y)
= EB(a∗(ι⊗ϕ(h∗ ⋅ ))(α(x))y)
= ⟨ΛA(a)⊗Λϕ(h),Gπ(ΛA(x)⊗ΛA(y))⟩.

As in the proof of Proposition 3.2, we can conclude that F0 extends to a bounded map F

from A ⊗L 2(G)π to Aπ ⊗B A, which is then the adjoint of Gπ. This way we obtain that the
π-localized Galois maps are adjointable.
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The equivalence between (3) and (3’), and between (4) and (4’) follows from Lemma 2.1, as
those conditions on π are clearly equivalent to having the corresponding ones for each irreducible
subrepresentation of π.

Finally, assuming A is unital, we show that (3) and (4) are equivalent. In fact, if A is unital, also
B is unital, and the third condition simply says that K(Aπ) is unital. In particular, Aπ must
be countably generated as a Hilbert module. By [8, Lemma 6.5] and Kasparov’s stabilisation
theorem [9, Corollary 6.3], Aπ ≅ pBn for some n ∈ N and some self-adjoint projection p ∈Mn(B),
and is hence finitely generated projective. Conversely, if Aπ is finitely generated projective, [8,
Lemma 6.5] implies that K(Aπ) is unital. Since K(Aπ) is an ideal in L(Aπ), this completes the
proof.

Remark. 1. The equivalence of adjointability of the Galois maps is not used in an essential
way in the proof of Theorem 3.3. In fact, it is possible to prove Proposition 3.2 and
Theorem 3.3 ‘at once’, by the arguments of the implications 3.2.(3) ⇒ 3.3.(1) and 3.3.(3)
⇒ 3.2.(1).

2. Let us assume our action is ergodic, which means B = C1 (and nessarily A unital). Then A
is a Hilbert space, and as the Hilbert C∗-Galois map is then an isometry between Hilbert
spaces, it is necessarily adjointable. Hence the implication (1)⇒ (5) of the previous result
captures as a special case the fact that the isotypical components of an ergodic action
are finite-dimensional (cf. [3]). Of course, this special case can be proven more directly
(whilst obtaining a stronger conclusion about the minimal number of generators).

3. Let G be a classical compact group acting on some compact space X . One can prove
that the adjointability of the corresponding Galois maps is equivalent with the following
purely topological condition: if Gx ⊆ G is the stabilizer group of the element x ∈ X , then
the assignment x→ Gx is continuous, with respect to the natural topology known as finite
or Vietoris topology on the space of closed subsets of G.

We end this section with the following observation about the range projection of the Galois
isometries.

Proposition 3.4. Suppose that the π-localized Galois maps are adjointable. Then GπG
∗
π is a

central element insideM(π(A ⋊G)π), and
GπG

∗
π = GπG

∗
π = GπG∗π .

Proof. Let us write Pπ = GπG
∗
π . Then we have

Pπ ∈ L(A ⊗Hπ) ≅ L(π(A ⋊G)) ≅M(π(A ⋊G)π),
where M means taking the multiplier C∗-algebra. Moreover, as in the proof of the previous
theorem, we can interpret G and its adjoint as the maps Πα and πred respectively. Hence for
x ∈ A ⋊G, we have Pπx = Πα(πred(x)) = Πα(πred(x∗))∗ = (Pπx∗)∗ = xPπ, so that Pπ is central.

From the ‘claim’ in the proof of Proposition 3.2, we have the inclusion

GπG∗π(ΛA(P (A))⊗C(G)π) ⊆ ΛA(P (A))⊗C(Gπ).
15



And from the construction of the maps G∗π and G ∗π there, the applications GπG∗π , GπG∗π and
GπG

∗
π coincide on P (A)⊗C(G)π (after applying the suitable Λ-maps).

Finally, a simple algebraic computation, coupled with a continuity argument, allows us to
conclude that for x ∈ π(A ⋊G)π and ξ ∈ A⊗L 2(G)π , one has

(ΛA ⊗ ι)(xξ) = x((ΛA ⊗ ι)ξ),
and

(ΛA ⊗ ι)(xξ) = x((ΛA ⊗ ι)ξ),
where the left π(A ⋊G)π-module structure on A ⊗L 2(G)π is obtained again by making first
the identification with π(A ⋊G). It follows that GπG∗π = GπG∗π = Pπ.

4 Freeness of compact quantum group actions

We keep the same notation as in the previous section, thus α is an action of a compact quantum
group G on a C∗-algebra A.

The action α is said to satisfy the Ellwood condition, or simply be free, if the following cancel-
lation property holds:

[α(A)(A⊗ 1)] = A⊗min C(G).
This condition was introduced in [5] in a more general setting of actions by locally compact
quantum groups. It is straightforward to check that if A = C0(X) for some locally compact space
X , and G is an ordinary compact group G, then the above condition characterizes precisely
the freeness of the action of G on X .

Since the subspaces (Aπ)π∈IrrG of A are orthogonal to each other, and similarly for the supspaces
(L 2(G)π)π∈IrrG in L 2(G), the isometries Gπ and Gπ, add up to respective isometries G and G.
Proposition 4.1. The following conditions are equivalent.

(1) The action α is free.

(2) The Hilbert C∗-Galois isometry G is unitary.

(3) The C∗-Galois isometry G is unitary.

Proof. Assume the action is free. Since the natural map (ΛA ⊗ Λϕ) from A ⊗min C(G) to
A ⊗L 2(G) is contractive, we see that the image of G is dense in its range. As G is isometric,
it then follows that it is bijective, hence unitary (cf. [9, Theorem 3.5]).

Let us assume that G is unitary. Then all Gπ are unitary operators. Proposition 3.4 implies
that all Gπ are unitary operators as well. It follows that G is a unitary.

Finally, let us assume G is unitary. Then we have [α(Aπ)(A ⊗ 1)] = A ⊗ C(G)π for each
representation π of G. As P (A) is dense in A, it follows that the action of G on A is free.
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Corollary 4.2 (Theorem 1.2). Let A be a unital C∗-algebra endowed with a free action of G,
and let π be a finite dimensional unitary representation of G.

(1) The space Aπ is a finitely generated right Hilbert B-module (and hence a finitely generated
and projective right B-module).

(2) The space A◻Hπ is finitely a generated right Hilbert B-module (hence finitely generated
and projective as a right B-module).

Proof. This follows from Theorem 3.3 and the previous proposition.

Following the case of group actions, we make the following definition of saturatedness.

Definition 4.3. We say that α is saturated if [(A ⋊G)triv ⋅ (A ⋊G)∗triv] = A ⋊G.

Note that if A is unital, this simply says that 1⊗ χ̂triv is a full projection in A ⋊G. In general,
this condition says that (A ⋊G)triv is an imprimitivity bimodule between B and A ⋊G.

We now prove the equivalence between freeness and saturatedness.

Theorem 4.4 (Theorem 1.1). A compact quantum group action of G on a (not necessarily
unital) C∗-algebra A is saturated if and only if it is free.

Proof. Observe first that the saturatedness condition is equivalent to that Πα(K(A,Aπ)) being
equal to π(A ⋊G) for each representation π of G. But this in turn is equivalent with all maps
Gπ having dense range, i.e. being unitaries. The theorem then follows from Proposition 3.4 and
Proposition 4.1.

5 Finite index inclusions of C∗-algebras

Let B ⊆ C be a unital inclusion of unital C∗-algebras. Following [26], we call this an inclusion
of finite-index type if there exists a conditional expectation E∶C → B and a finite set of pairs
(vi,wi) ∈ C ×C, called a quasi-basis for E, such that

∑
i

viE(wix) = x =∑
i

E(xvi)wi (x ∈ C).

Such a conditional expectation is itself called a conditional expectation of finite-index type.
Then, the index of E is defined as

Index(E) =∑
i

viwi (4)

This does not depend on the choice of quasi-basis, and belongs to the center of C.

An equivalent characterisation of a conditional expectation of finite-index type is the following.
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Lemma 5.1. Let B ⊆ C be as above, and E∶C → B a conditional expectation. Then E is of
finite-index type if and only if the right B-module C, together with the B-valued inner product
⟨x, y⟩B = E(x∗y), is a finitely generated right Hilbert B-module.

Proof. If C is a finitely generated right Hilbert B-module in the way prescribed above, it follows
from [26, Corollary 3.1.4] and the remark following it that E is of finite-index type.

Conversely, assume that E is of finite-index type. We know that C is finitely generated as a
right B-module, and, by [26, Proposition 2.1.5], that there exists a constant c > 0 such that

∥E(x∗x)∥ ≤ ∥x∗x∥ ≤ c∥E(x∗x)∥.
Hence C with its B-valued inner product is complete, and becomes a finitely generated right
Hilbert B-module. This concludes the proof.

Assume now again that A is a unital C∗-algebra with an action by a compact quantum group
G, with B denoting the C∗-algebra of G-fixed elements. Let us fix a representation π of G with
a fixed orthogonal basis {ei} for Hπ, and write δπ(ei) =∑j uij ⊗ ej with uij ∈ C(G).
On the one hand, we can twist the coaction α with the representation π to obtain the coaction

απ∶A⊗B(Hπ)→ (A⊗B(Hπ))⊗min C(G),
which, using the Sweedler notation α(a) = a(0) ⊗ a(1), is given by the formula

απ(a⊗ eie
∗
j ) =∑

k,l

a(0) ⊗ eke
∗
l ⊗ u

∗
kia(1)ulj.

On the other hand, we can also consider the following left coaction of C(G) on B(Hπ):
Adπ∶B(Hπ)→ C(G)⊗B(Hπ)∶ eie∗j →∑

k,l

uiku
∗
jl ⊗ eke

∗
l .

We let A◻B(Hπ) denote the space {x ∈ A⊗B(Hπ)∶ (α ⊗ ι)(x) = (ι⊗Adπ)(x)}.
The following lemma follows from a straightforward computation, which we omit.

Lemma 5.2. The C∗-subalgebras (A⊗B(Hπ))G and A◻B(Hπ) of A⊗B(Hπ) coincide.
Theorem 5.3 (Theorem 1.3, first part). Let A be a unital C∗-algebra, endowed with a free
action of G. Then the inclusion B = AG ⊆ (A⊗B(Hπ))G is a finite-index type inclusion.

Proof. By the previous lemma, it is equivalent to show that B ⊆ A◻B(Hπ) is an inclusion of
finite-index type. Let us choose a faithful Adπ-invariant state θπ on B(Hπ). Then we can view
B(Hπ) as a Hilbert space by the inner product ⟨x, y⟩ = θπ(x∗y), and it is immediate that this
turns Adπ into a representation of G.

Consider the map
E∶A◻B(Hπ)→ A∶x → (ι⊗ θπ)x.
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First, it is faithful, being a restriction of the faithful map ι ⊗ θπ. Next, its image is the
intersection A⊗C ∩A◻B(Hπ) = B. Moreover, the E-induced inner product ⟨x, y⟩B = E(x∗y)
on A◻B(Hπ) coincides precisely with the one we defined in Section 2 (viewing B(Hπ) as
a Hilbert space as above). Hence, by Corollary 4.2, A◻B(Hπ) is a finitely generated right
Hilbert B-module. The theorem now follows from Lemma 5.1.

Remark that, by the same proof, the theorem holds more generally for any coaction whose
associated C∗-Galois map is adjointable (or indeed just its π ⊗ π̄-localization is adjointable).

To end, let us show that, when π is irreducible, the index of the above inclusion is in fact a
scalar, equal to the square of the quantum dimension of Hπ. This should not be surprising:
it is the quantum analogue of the fact that if V is representation of a compact group G, and
X a compact space with a free action by G, the pullback of V to X by means of the action
gives a vector bundle of constant rank the dimension of V . For more on this in a von Neumann
algebraic context, see e.g. [25],[2] and [22].

Note that the formula (4) still makes sense in case E is just a B-bimodular map from C to B

and the ‘inclusion map’ map B → C is not injective. We will make use of the following lemma,
whose proof is very similar to the one for the statement that finite index is stable under the
Jones tower construction (cf. [26, Proposition 1.6.6]). It will later on allow us to tune down
one half an argument of [25].

Lemma 5.4. Let B be a unital C∗-algebra, and E a right Hilbert B-bimodule which is finitely
generated as a left and as a right B-module. Assume that E has a left B-valued inner product

B⟨ ⋅ , ⋅ ⟩ such that E becomes also a left Hilbert B-bimodule (with respect to the given B-bimodule
structure on E).
Then the map

E∶K(E)B → B∶ ξη∗ → B⟨ξ, η⟩
is well-defined and B-bimodular (with respect to the natural map B → K(E)B). Choosing further
a finite set of elements ξj, ηj , ξ̃i, η̃i ∈ E such that

∑
j

ξj⟨ηj , ξ⟩B = ξ =∑
i

B⟨ξ, ξ̃i⟩η̃i, for all ξ ∈ E ,

the elements
vij = ξj η̃

∗
i , wij = ξ̃iη

∗
j

form a quasi-basis for E, and hence the index of E is given by

Index(E) =∑
j

ξj(∑
i

⟨η̃i, ξ̃i⟩B)η∗j .

To be clear, the adjoint operation is taken with respect to the right Hilbert module structure.
Note that, if the sum ∑i ⟨η̃i, ξ̃i⟩B equals c1 for some scalar c, then we have Index(E) = c1.
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Proof. We will only verify that one half of the quasi-basis property w.r.t. E is satisfied for
the pairs (vij ,wij). Note that we can restrict ourselves to the verification of the identity
T = ∑i,j vi,jE(wi,jT ) for rank 1 endomorphisms T of E , as we can obtain the same formula for
arbitrary T ∈ K(E) by the linearity.

Suppose that T = ξη∗ for some vectors ξ, η in E . Then we have wijT = ξ̃i⟨ηj , ξ⟩Bη∗. Hence we
can compute

∑
i,j

vijE(wijT ) =∑
i,j

ξj η̃
∗
i B
⟨ξ̃i⟨ηj, ξ⟩B, η⟩ =∑

i,j

ξj(B⟨ξ̃i⟨ηj , ξ⟩B, η⟩
∗
η̃i)∗.

Note that the inner product satisfies the symmetry B⟨x, y⟩∗ = B⟨y, x⟩, and the compatibility

B⟨x, ya⟩ = B⟨xa∗, y⟩ with the bimodule structure. Using these, we may further transform the
right hand side of the above to

∑
i,j

ξj (B⟨η⟨ηj, ξ⟩∗B, ξ̃i⟩η̃i)∗ =∑
j

ξj (η⟨ηj , ξ⟩∗B)∗ =∑
j

ξj⟨ηj, ξ⟩Bη∗ = ξη∗,

which proves ∑i,j vijE(wijT ) = T .
Let us now fix a free action of G on a unital C∗-algebra A. We also fix an irreducible finite
dimensional unitary representation π of G. Let us recall here also the following strong left
invariance property for ϕ: if g, h ∈ P (G), then we have

ϕ(gh(2))h(1) = ϕ(g(2)h)S(g(1)).
Lemma 5.5. The natural representation of A◻B(Hπ) on A◻Hπ is faithful.

Proof. Note first that we can realize K(A◻Hπ) as an ideal inside A◻B(Hπ), formed by the
span of the elements of the form ∑i,j xiy

∗
j ⊗ eie

∗
j with ∑xi ⊗ ei and ∑ yi ⊗ ei inside A◻Hπ.

The faithfulness of our representation is then equivalent to that this ideal equals the whole of
A◻B(Hπ).
Now choose an orthonormal basis ei ∈Hπ, and write δπ(ei) =∑j uij⊗ej. Take x ∈ P (A). Then,
using that S(u∗ij) = uji together with strong left invariance, one finds that ∑j ϕ(u∗jix(1))x(0)⊗ej
lies in A◻Hπ, where we have used again the Sweedler notation for the coaction α. Hence
K(A◻Hπ) contains all elements of the form

∑
k,l

ϕ(u∗kix(1))ϕ(y∗(1)ulj)x(0)y∗(0) ⊗ eke
∗
l .

But we can write this in the form

∑
k,l

ϕ(u∗kix(2))ϕ(S−1(x(1))(x(0)y∗)(1)ulj) (x(0)y∗)(0) ⊗ eke∗l .
Now from the proof of Propositions 3.2 and 4.1, it follows that we can express any a⊗ h with
a ∈ P (A) and h ∈ P (G) as a linear combination of elements of the form α(x)(y∗ ⊗ 1). Hence,
taking the particular case a = 1, we see that K(A◻Hπ) contains all elements of the form

∑
k,l

ϕ(u∗kih(2))ϕ(S−1(h(1))ulj)1⊗ eke
∗
l .
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Rewriting this slightly by means of strong left invariance, this becomes

∑
k,l,p

ϕ(u∗pih)ϕ(u∗kpulj)1⊗ eke∗l .

Using the matrices Qπ from Section 2.1, the above simplifies to

dimq(Hπ)−1(∑
p

⟨ej ,Qπep⟩ϕ(u∗pih)) 1⊗ 1.

It is clear that the sum does not vanish for at least one value for i, j and h, proving that
K(A◻Hπ) contains the unit of A◻B(Hπ), and is thus equal to the latter algebra.

Remark that the above proof, with a slightly modified last step, works just as well for repre-
sentations which are not irreducible. Although we will not really need it, let us make the link
then at this point with the theory of eigenmatrices.

Corollary 5.6. Let π be a representation of G, and choose an orthonormal basis (ei) for Hπ.
Write δ(ei) =∑j uij ⊗ ej, and write

A(π) = {x =∑
ij

xij ⊗ eji ∈Mn(A) ∣ α(xij) =∑
k

xik ⊗ ukj} ⊆ A⊗B(Hπ),

which is called the space of π-eigenmatrices. Then we have

A(π)A(π)∗ = (A⊗B(Hπ))G. (5)

Proof. It is easily verified that we have an isomorphism of vector spaces

(A◻Hπ)⊗H
∗
π → A(π)∶(∑

i

ai ⊗ ei)⊗ e∗j →∑
i

ai ⊗ eie
∗
j .

It follows immediately that

A(π)A(π)∗ = (A◻Hπ)(A◻Hπ)∗,
from which the corollary follows by the previous lemma.

Peligrad [12, Corollary 3.5] showed that, for the case of compact group actions, the condition (5)
is equivalent to the saturatedness of the action. These results are also closely related to the
strong monoidality of the operation A◻−.

Assume now again π irreducible, and consider on A◻Hπ the left Hilbert B-module structure
by

B⟨ξ, η⟩ = (ι⊗ θπ)ξη∗,
where θπ is the unique Adπ-invariant state on B(Hπ). It is easy to see that the conditional
expectation E∶A◻B(Hπ) ≅ K(A◻Hπ) → B from Theorem 5.3 corresponds precisely to the
one from Lemma 5.4.
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Theorem 5.7 (Theorem 1.3, second part). The index of the conditional expectation (ι ⊗ θπ)
for B ⊆ (A⊗B(Hπ))G equals dimq(Hπ)2, the square of the quantum dimension of Hπ.

Proof. As in Section 2.1, let us identify Hπ with H ∗
π endowed with the modified inner product

⟪e∗i , e∗j⟫ = θπ(eie∗j ).
Then we calculate that

(B⟨∑
i

xi ⊗ ei,∑
i

yi ⊗ ei⟩∑
i

zi ⊗ ei)
∗

=∑
i

z∗i ⊗ e∗i ⟨∑
i

y∗i ⊗ e∗i ,∑
i

x∗i ⊗ e∗i ⟩
B
,

where the B-valued inner product on the right is now interpreted in B ◻Hπ.

Choose now orthonormal bases (ei)i and (fi)i respectively in Hπ and Hπ, and write δ(ei) =
∑j uij ⊗ ej and δπ(fi) = ∑j vij ⊗ fj . Let us choose h, g ∈ P (G) such that

ϕ(u∗ijh) = δij, ϕ(v∗ijg) = δij .
Finally, let us choose a finite collection of xk, yk,wl, zl ∈ P (A) such that

∑
k

α(xk)(y∗k ⊗ 1) = 1⊗ h, ∑
l

α(wl)(z∗l ⊗ 1) = 1⊗ g.

Then the proof of Lemma 5.5, coupled with the observation at the beginning of the current
proof, shows that the elements

ξi,k =∑
p

ϕ(u∗pixk(1))xk(0) ⊗ ep, ηi,k =∑
p

ϕ(u∗piyk(1))yk(0) ⊗ ep,
ξ̃i,l =∑

p

ϕ(z∗l(1)vpi)z∗l(0) ⊗ f∗p , η̃i,l =∑
p

ϕ(w∗l(1)vpi)w∗l(0) ⊗ f∗p

satisfy the hypotheses of Lemma 5.4. To be clear, if v = ∑i cie
∗
i ∈ Hπ = H ∗

π , then v∗ denotes
the vector ∑i ciei in Hπ.

Now the same computation as in Lemma 5.5 shows that

∑
i,k

⟨η̃i,k, ξ̃i,k⟩B = (∑
i

fif
∗
i )1.

Therefore we obtain Index(E) = (∑i fif
∗
i )1. From the way ⟪⋅, ⋅⟫ was defined and (1), we see

that a possible choice of (fi)i is
fi = dimq(Hπ)1/2∑

k

⟨ei,Q1/2
π ek⟩e∗k.

For this choice we can compute ∑i fif
∗
i = dimq(Hπ)Tr(Qπ) = dimq(Hπ)2, finishing the proof.
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